Package: tidyhte 1.0.2
tidyhte: Tidy Estimation of Heterogeneous Treatment Effects
Estimates heterogeneous treatment effects using tidy semantics on experimental or observational data. Methods are based on the doubly-robust learner of Kennedy (n.d.) <arxiv:2004.14497>. You provide a simple recipe for what machine learning algorithms to use in estimating the nuisance functions and 'tidyhte' will take care of cross-validation, estimation, model selection, diagnostics and construction of relevant quantities of interest about the variability of treatment effects.
Authors:
tidyhte_1.0.2.tar.gz
tidyhte_1.0.2.zip(r-4.5)tidyhte_1.0.2.zip(r-4.4)tidyhte_1.0.2.zip(r-4.3)
tidyhte_1.0.2.tgz(r-4.4-any)tidyhte_1.0.2.tgz(r-4.3-any)
tidyhte_1.0.2.tar.gz(r-4.5-noble)tidyhte_1.0.2.tar.gz(r-4.4-noble)
tidyhte_1.0.2.tgz(r-4.4-emscripten)tidyhte_1.0.2.tgz(r-4.3-emscripten)
tidyhte.pdf |tidyhte.html✨
tidyhte/json (API)
NEWS
# Install 'tidyhte' in R: |
install.packages('tidyhte', repos = c('https://ddimmery.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ddimmery/tidyhte/issues
Last updated 1 years agofrom:21b553ae05. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win | NOTE | Nov 07 2024 |
R-4.5-linux | NOTE | Nov 07 2024 |
R-4.4-win | OK | Nov 07 2024 |
R-4.4-mac | OK | Nov 07 2024 |
R-4.3-win | OK | Nov 07 2024 |
R-4.3-mac | OK | Nov 07 2024 |
Exports:add_effect_diagnosticadd_effect_modeladd_known_propensity_scoreadd_moderatoradd_outcome_diagnosticadd_outcome_modeladd_propensity_diagnosticadd_propensity_score_modeladd_vimpattach_configbasic_configConstant_cfgconstruct_pseudo_outcomesDiagnostics_cfgestimate_diagnosticestimate_QoIHTE_cfgKernelSmooth_cfgKnown_cfgmake_splitsMCATE_cfgModel_cfgModel_dataPCATE_cfgproduce_plugin_estimatesQoI_cfgremove_vimpSL.glmnet.interactionSLEnsemble_cfgSLLearner_cfgStratified_cfgVIMP_cfg
Dependencies:backportsbitopscaToolscheckmateclicodetoolscrayoncvAUCdata.tabledplyrfansiforeachgamgenericsgluegplotsgtoolshmsiteratorsKernSmoothlifecyclemagrittrnnlspillarpkgconfigprettyunitsprogresspurrrR6rlangROCRSuperLearnertibbletidyselectutf8vctrswithr
HTE Analysis in an Experiment
Rendered fromexperimental_analysis.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2023-07-26
Started: 2021-10-25
HTE Analysis on Observational Data
Rendered fromobservational_analysis.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2023-07-26
Started: 2021-10-25
Methodological Details
Rendered frommethodological_details.Rmd
usingknitr::rmarkdown
on Nov 07 2024.Last update: 2023-07-27
Started: 2021-11-18