Package: tidyhte 1.0.2

tidyhte: Tidy Estimation of Heterogeneous Treatment Effects

Estimates heterogeneous treatment effects using tidy semantics on experimental or observational data. Methods are based on the doubly-robust learner of Kennedy (n.d.) <arxiv:2004.14497>. You provide a simple recipe for what machine learning algorithms to use in estimating the nuisance functions and 'tidyhte' will take care of cross-validation, estimation, model selection, diagnostics and construction of relevant quantities of interest about the variability of treatment effects.

Authors:Drew Dimmery [aut, cre, cph]

tidyhte_1.0.2.tar.gz
tidyhte_1.0.2.zip(r-4.5)tidyhte_1.0.2.zip(r-4.4)tidyhte_1.0.2.zip(r-4.3)
tidyhte_1.0.2.tgz(r-4.4-any)tidyhte_1.0.2.tgz(r-4.3-any)
tidyhte_1.0.2.tar.gz(r-4.5-noble)tidyhte_1.0.2.tar.gz(r-4.4-noble)
tidyhte_1.0.2.tgz(r-4.4-emscripten)tidyhte_1.0.2.tgz(r-4.3-emscripten)
tidyhte.pdf |tidyhte.html
tidyhte/json (API)
NEWS

# Install 'tidyhte' in R:
install.packages('tidyhte', repos = c('https://ddimmery.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ddimmery/tidyhte/issues

On CRAN:

5.33 score 13 stars 11 scripts 561 downloads 32 exports 37 dependencies

Last updated 1 years agofrom:21b553ae05. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-winNOTENov 07 2024
R-4.5-linuxNOTENov 07 2024
R-4.4-winOKNov 07 2024
R-4.4-macOKNov 07 2024
R-4.3-winOKNov 07 2024
R-4.3-macOKNov 07 2024

Exports:add_effect_diagnosticadd_effect_modeladd_known_propensity_scoreadd_moderatoradd_outcome_diagnosticadd_outcome_modeladd_propensity_diagnosticadd_propensity_score_modeladd_vimpattach_configbasic_configConstant_cfgconstruct_pseudo_outcomesDiagnostics_cfgestimate_diagnosticestimate_QoIHTE_cfgKernelSmooth_cfgKnown_cfgmake_splitsMCATE_cfgModel_cfgModel_dataPCATE_cfgproduce_plugin_estimatesQoI_cfgremove_vimpSL.glmnet.interactionSLEnsemble_cfgSLLearner_cfgStratified_cfgVIMP_cfg

Dependencies:backportsbitopscaToolscheckmateclicodetoolscrayoncvAUCdata.tabledplyrfansiforeachgamgenericsgluegplotsgtoolshmsiteratorsKernSmoothlifecyclemagrittrnnlspillarpkgconfigprettyunitsprogresspurrrR6rlangROCRSuperLearnertibbletidyselectutf8vctrswithr

HTE Analysis in an Experiment

Rendered fromexperimental_analysis.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2023-07-26
Started: 2021-10-25

HTE Analysis on Observational Data

Rendered fromobservational_analysis.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2023-07-26
Started: 2021-10-25

Methodological Details

Rendered frommethodological_details.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2023-07-27
Started: 2021-11-18

Readme and manuals

Help Manual

Help pageTopics
Add an additional diagnostic to the effect modeladd_effect_diagnostic
Add an additional model to the joint effect ensembleadd_effect_model
Uses a known propensity scoreadd_known_propensity_score
Adds moderators to the configurationadd_moderator
Add an additional diagnostic to the outcome modeladd_outcome_diagnostic
Add an additional model to the outcome ensembleadd_outcome_model
Add an additional diagnostic to the propensity scoreadd_propensity_diagnostic
Add an additional model to the propensity score ensembleadd_propensity_score_model
Adds variable importance informationadd_vimp
Attach an 'HTE_cfg' to a dataframeattach_config
Create a basic config for HTE estimationbasic_config
Configuration of a Constant EstimatorConstant_cfg
Construct Pseudo-outcomesconstruct_pseudo_outcomes
Configuration of Model DiagnosticsDiagnostics_cfg
Estimate Quantities of Interestestimate_QoI
Configuration of Quantities of InterestHTE_cfg
Configuration for a Kernel SmootherKernelSmooth_cfg
Configuration of Known ModelKnown_cfg
Define splits for cross-fittingmake_splits
Configuration of Marginal CATEsMCATE_cfg
Base Class of Model ConfigurationsModel_cfg
R6 class to represent data to be used in estimating a modelModel_data
Prediction for an SL.glmnet objectpredict.SL.glmnet.interaction
Estimate models of nuisance functionsproduce_plugin_estimates
Configuration of Quantities of InterestQoI_cfg
Removes variable importance informationremove_vimp
Elastic net regression with pairwise interactionsSL.glmnet.interaction
Configuration for a SuperLearner EnsembleSLEnsemble_cfg
Configuration of SuperLearner SubmodelSLLearner_cfg
Configuration for a Stratification EstimatorStratified_cfg
Configuration of Variable ImportanceVIMP_cfg